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Abstract

A boundary element method and its numerical implementation for the analysis of piezoelectric materials are pre-
sented with the aim to exploit their features in linear electroelastic fracture mechanics. The problem is formulated
employing generalized displacements, that is displacements and electric potential, and generalized tractions, that is
tractions and electric displacement. The generalized displacements boundary integral equation is obtained by using the
closed form of the piezoelasticity fundamental solutions. These are derived through a displacement based modified
Lekhnitskii’s functions approach. The multidomain boundary element technique is implemented to achieve the nu-
merical solution. Results are presented for typical fracture mechanics problems. The generalized stress intensity factors
and the generalized relative crack displacements are computed to show the soundness of the approach. The results
obtained are also analyzed to highlight some interesting features of the electroelastic coupling effects. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials generate an electric field when subjected to strain fields and undergo deformation
when an electric field is applied. This inherent electromechanical coupling is widely exploited in the design
of many devices working as transducers, sensors and actuators. In addition, piezoelectric materials are a
primary concern in the field of advanced lightweight structures where the smart structure technology is now
emerging (Crawley, 1987, 1994). By bonding or merging piezoelectric members within a structure it is
possible to control the structure behavior through electrically induced strain fields and, conversely, employ
the strain-induced electric field as a feedback driver. The effective control of piezoelectric smart structures
can be achieved by means of the optimal combination of structural and control elements, which allows
using all the benefits of the electromechanical coupling. This implies that the design of a piezoelectric smart
structure refers to an accurate insight into the electromechanical response of the members of the structure.
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Analytical solutions to boundary value problems of piezoelectric solids are rather rare, due to the com-
plexity of the governing equations. These solutions are for the most part devoted to interesting but simple
problems of inclusions, inhomogeneities and dislocations (Pak, 1990b; Wang, 1992; Benveniste, 1992;
Dunn, 1994a). To consider more realistic cases of technical interest numeric simulations need to be used.
The first finite element solution for piezoelectric solids was proposed by Allik and Hughes (1970) and the
method was applied successfully to general piezoelectric problems, as shown by the literature on the subject
(Benjeddou, 2000). More recently the boundary element method (BEM) has been used to solve both two-
dimensional (Lee and Jiang, 1994; Lee, 1995) and three-dimensional (Chen and Lin, 1995; Hill and Farris,
1998) piezoelectric problems. It was proved accurate and very efficient particularly when the investigation
concerns two-dimensional piezoelastic bodies for which the fundamental solutions are known in closed
form (Lee and Jiang, 1994; Lee, 1995; Sosa and Castro, 1990; Davi and Milazzo, 2000). A remarkable line
of investigation involves crack problems in piezoelectric bodies (Parton, 1976). Indeed, due to the brittle
behavior of piezoelectric materials, reliable service lifetime predictions demand a comprehensive under-
standing of the fracture process in the presence of electromechanical coupling. In this field analytical
approaches have been developed for linear fracture mechanics and the relative solutions are based on
eigenfunction expansion (Sosa and Pak, 1990), complex series expansion (Zhong and Meguid, 1997), su-
perposition of distributed dislocations and electric dipoles (Pak, 1992), complex potentials (Pak, 1990a;
Zhang and Tong, 1996) and complex variable approach (Suo et al., 1992; Park and Sun, 1995). Again, the
analytical solutions above mentioned allow to analyze representative samples and numerical methods are
required to approach the modelization and solution of piezoelasticity fracture mechanics complex prob-
lems. From this point of view, the BEM is particularly well suited and efficient to solve problems char-
acterized by high stress gradients like crack problems (Aliabadi, 1997). The main advantages are the
pointwise representation of the solution and the computational gain associated with the boundary dis-
cretization. Notwithstanding, there has been a certain lack of attention as regard the study of inclusion and
crack problems in piezoelasticity by the integral equation approach. Only recently the BEM has been
applied to piezoelastic fracture mechanics employing a single domain approach, which requires the use of
hypersingular integral equations (Pan, 1999). In the present paper, piezoelastic fracture mechanics prob-
lems are investigated by using a multidomain boundary element approach (Davi and Milazzo, 2000). The
formulation is based on the definition of the generalized displacements, that is mechanical displacements
and electric potential. By using these generalized displacements one attains to a form of the governing
equations that resembles the classic elasticity notation and it is very well suited to obtain the boundary
integral representation. This representation for the generalized displacements is deduced starting from the
piezoelasticity reciprocity theorem, which is the extension of the well-known elasticity reciprocity theorem
to the electromechanical problem. The fundamental solutions, needed to infer the boundary integral rep-
resentation, have been expressly determined by using a displacement based modified Lekhnitskii’s functions
approach (Lekhnitskii, 1963). The numerical solution of the formulation is obtained by BEM implementing
its multidomain technique. Fracture mechanics analyses have been performed and the results obtained
show the accuracy and robustness of the method. They also evidence interesting topics of the influence of
the electromechanical coupling on the behavior of cracked piezoelectric solids.

2. Definitions and governing equations

Consider a transversely isotropic piezoelectric material and let it be referred to a co-ordinate system
X1xx3, with the x, axis as the poling direction (Kiral and Eringen, 1990). Attention will be focused on two-
dimensional problems for a body, which occupies the domain @, bounded by the contour 0Q in the x;x,
plane, so that the electromechanical response does not vary along the thickness direction x3 (Pak, 1992).
The piezoelastic analysis, corresponding to the arrangement of a generalized plane strain elasticity problem
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and an in-plane electrostatic problem, involves the strains 7 = [y, 72 733 73 731 Va1 ) » the stresses
6=|ony on 03 03n 03 Oy ]T, the electric field E = [E, E, E3]T and the electric displacement
D=[D, D, D;]". To obtain a compact and efficient matrix notation the strain y, and electric field
component 3, which are trivially zero due to the assumptions of generalized plane strain and in-plane
electrostatics, are kept in the formulation. Let us introduce the mechanical displacement vector u =
[uy wp U3]T and the electric potential ¢, which are functions of x; and x, only. The strain tensor and
electric field vector are linked to mechanical displacements and electric potential by the compatibility
equations

y=%u (1)

E=-Z¢ )
where

@/6x1 0 0 0 0 6/6}@
G = 0 0/ox, 0 0 0 0/0x (3)
0 0 0 0/0x, 0/0x 0

¢ =[0/ax, dfox, 0] (4)
The following relations give the elasticity and electrostatics governing equations

Ge+f=0 (5)

TD—-g=0 (6)

which are the equilibrium equations and the Gauss’ s law for electrostatics, respectively. In Egs. (5) and (6),
f=[/ £ f ]T and ¢ are the body force vector and the electric charge density, respectively. Finally, the
constitutive equations for transversely isotropic piezoelectric materials assume the following form

fon] [Cu Cn Gz 0 0 0 0 —en 0 777
02 Ch Cpn Cp O 0 0 0 —e»n O Y22
g33 C]3 C12 C]] 0 0 0 0 —ey] 0 V33
o3 0 0 0 Cuy 0 0 0 0 —eul|l|ym
[]ﬂ =loy|=|0 0 0 0 Yci-cy 0 0 0 0 ||
oo 0O 0 0 0 0 Cu —ew 0 0 ||
D 0 0 0 0 0 ey & 0 0 E,
D, ey en ey O 0 0 0 &0 0 E,
p,] Lo 0 0 ey 0 0 0 0 e JLE]
C e[y
it <7>

where C;; are the elastic coeflicients, measured in a constant electric field, e;; are the piezoelectric constants
and ¢; are the dielectric constants, measured at constant strain. According to Barnett and Lothe (1975), it is
possible to introduce suitable electroelastic quantities given by the generalized displacements U, the gen-
eralized body forces F and the generalized strains and stresses I' and 2, which are defined as follows

U=[u w u o] ®)

F=[fi /o f5 —q]' 9)
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T
Fr'=[vy 72 73 72 " yu —Ei —E2 —E] (10)

X=[on on 03 o0n 03 on D D D3]T (11)

By introducing the differential operator

4 0
) —
s=[s 1] -
and the generalized stiffness matrix
C e'
R = L _8] (13)
the governing equations of the problem, i.e. Eqs. (1)—(7), can be recast as
r=9uU (14)
Y =RTr (15)
7'E+F=0 (16)

By combining Egs. (14), (15) and (16), one obtains the governing equations of the piezoelastic problem in
terms of generalized displacements

F"RZU +F =0 (17)

The boundary conditions on the restrained boundary 0, are given in terms of prescribed generalized
displacements

U=U ondQ (18)

whereas on the free boundary 002, they are given in terms of prescribed generalized tractions (Suo et al.,
1992)

T=T ondQ, (19)

The generalized tractions T, i.e. mechanical tractions and the normal component of the electric displace-
ment, are defined by the following relation

o= ZTRIZU (20)
3

D,

In the above equation &, is the generalized traction operator, obtained from the differential operator & by
replacing the derivatives with the corresponding direction cosines of the boundary outer normal (Davi and
Milazzo, 1997).

3. Boundary integral representation

Let U; be the generalized displacements which characterize a fictitious solution of the piezoelastic
problem and that satisfies the equilibrium equation for given generalized body forces F;

Z"RZU; +F; =0 (21)
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Let 2; and I'; denote the generalized stress and strain fields, associated with U;, whereas T; are the related
generalized tractions. Taking the nature of Eq. (17) into consideration, the following reciprocity theorem
holds for the actual piezoelastic response and the above-introduced fictitious solution (Davi and Milazzo,
2000)

/a ) (Ul - T/U)dog - /Q (F'u - UfF)de (22)

Eq. (22) is the extension of the classic Betti’s reciprocity theorem to the electroelastic problem. It represents
the starting point to deduce the boundary integral representation for piezoelasticity. Consider U; as a
particular fictitious solution associated with a system of concentrated generalized body forces F;, applied at
the point A,

F;=¢;0(P—FR) (23)

where c; is the load intensity and 6(P — Py) indicates the Dirac’s function. For this selection of the particular
solution, known as the fundamental solution of the problem, the reciprocity theorem provides the following
relationship

¢/ U(R) + /

oQ

(T/u-UlT)doe = / UTFdQ (24)
Q
Eq. (24) is the electroelastic boundary integral representation and it is the analogous of the Somigliana
identity of the elasticity extended to the electromechanical problem (Lee and Jiang, 1994; Davi and Mil-
azzo, 2000). By using four independent fundamental solutions (j = 1,...,4), associated with concentrated
forces directed along the axes and to a concentrated charge, one obtains the three displacement components
and the electric potential at the point Py in terms of the displacements, tractions, electric potential and
normal electric displacement on the boundary of the body. In matrix form, the boundary integral repre-
sentation is given by

cU(P) + /m (T"U - U'T)doQ = /QU*FdQ (25)
The kernels U* and T*, appearing in Eq. (25), are defined as

U =[u) (26)

T = (1) (27)

where U;; and T}; indicate the ith component of the generalized displacements and tractions of the jth
fundamental solution. The matrix ¢* is defined by (Davi, 1989)

¢ =— / T'doQ (28)
0Q

For P, belonging to the boundary 0Q, Eq. (25) provides the boundary integral equations, which link the
variables on the boundary. The boundary integral equations, coupled with the appropriate boundary
conditions, allow determining the unknowns on the boundary. Once the boundary solution is determined,
Eq. (25) gives the generalized displacements at the laminate generic internal point Py. The generalized
strains at P can be calculated in a pointwise fashion by pre-multiplying Eq. (25) by ¢*~! and then differ-
entiating with respect to the source point Py. One deduces the following boundary integral representation
for the generalized strain field (Banerjee and Butterfield, 1981)
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IR) = / (E°T — ©°U)doQ + / EFdQ (29)
oQ Q
where
@* — _gc*—lT* (30)
= —gc¢'U (31)

Finally, the boundary integral representation for the generalized stresses can be simply obtained by pre-
multiplying Eq. (29) for the extended stiffness matrix R. One has

(P = /a . (RE'T — RO*U)d0Q + /Q RE'FdQ (32)

4. Fundamental solutions

The formulation of the boundary integral equations needs the knowledge of an electroelastic solution of
the piezoelectric domain loaded by concentrated generalized body forces applied at the point F,. The
fundamental solution is therefore governed in the domain Q by the following equilibrium equation

F"RIU; + ¢;0(P — Py) = 0 (33)

A particular solution of Eq. (33) has been deduced by Lee and Jiang (1994), who employed the double
Fourier transform method. Sosa and Castro (1994) obtained the fundamental solution through a state
space approach coupled with the Fourier analysis. More recently, Pan (1999) proposed an approach based
on the complex variable functions to determine the Green’s functions for piezoelectric solids. In the present
paper the fundamental solution is directly deduced by a variant of the Lekhnitskii’s functions method
(Lekhnitskii, 1963). The stress functions approach, employed for anisotropic elasticity by Lekhnitskii, is
here extended to piezoelasticity and reformulated in terms of generalized displacements. Observing that Eq.
(33) is a homogeneous equation (Lekhnitskii, 1963), except that at the point P, where the solution is sin-
gular, it admits particular solutions of the form

U=Jaln (X; + 1Xp) (34)
where a, ¢ and 1 are complex constants to be determined and
X, =x:(P) —x;(P) (i=1,2) (35)

Substitution of Eq. (34) into Eq. (33) leads to the eigenvalue problem corresponding to Eq. (33), that is
[IIRI, + u(I/RL + LRI + T RL]a =0 (36)

where the matrix I, (m = 1,2) is obtained from the operator £ by setting the derivative with respect to x,,
equal to one and replacing all the other terms with zeros. The solution of Eq. (36) gives eight eigenvalues y,
and the relative eigenvectors a,, which form conjugate pairs for stable materials. The fundamental solutions
are obtained by superposing eight solutions of the form (34), associated with the eight eigenvalues p,. If
Im(p;) > 0, the generalized displacements U; of the fundamental solution are given by

4
U, = ZZRG [Zjay In (X + 14,X)] 7

k=1

The generalized tractions are obtained from the following relation
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4
T;=2) Re {AkaIR@/,kak (38)
k=1

X1+ X

where the matrix &,, is obtained from the operator & by replacing the derivative with respect to x; with one
and the derivative with respect to x, with y. The constants /;; are determined by enforcing the compati-
bility and equilibrium conditions. The vector 4; = [, 4y 43 J47]" is then computed by

J=(B+BAA) g, (39)

where the tilde denotes the complex conjugate, A is the eigenvectors matrix and the columns by of the
matrix B are defined as

bk = gkR@m a (40)
where
-1 0 0 0 0 -1 0 0 0
5 i tv-lwlo v-10 0 0 -1 0 0 0 (1)
g 1+ 2 0 0 0 +v—=1 -1 0 0 0 0
0 0 0 0 0 0 -1 v=10

It is worth noting that the present fundamental solution has been derived by using a suitable matrix no-
tation, which is very advantageous for computer implementation.

5. Numerical model and solution

The boundary integral equation formulation is solved numerically by the BEM (Banerjee and Butter-
field, 1981). The boundary 0Q is discretized into m boundary elements and over each of these elements 0€
the generalized displacements and tractions, U and T, are expressed in terms of their respective nodal values
A(k> and P<k)

U=N4 (k) on 69<k> (42)

T= lPP(H on 69<k> (43)

where N and ¥ are matrices of standard shape functions whose order depends on the class of boundary
elements used in the numerical model. In the absence of generalized body forces, the discretized version of
Eq. (25) for any point P, is therefore given by

qU(p) + ZHikA(k> + ZGikP<k> =0 (44)
k=1 =1
where
H; = / T*(P,P,)N(P)doQ (45)
2,
Gir = —/ U*(P,P)¥(P)doQ (46)
0

By taking the field point P, to all boundary nodes using a collocation technique and absorbing the ¢; matrix
with the corresponding block of H;;, one obtains a linear algebraic system, which can be compactly written
as (Banerjee and Butterfield, 1981)

HA—GP =0 (47)
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where H and G are the square influence matrices, 4 is the vector of the nodal values of the generalized
displacements and P the vector of the nodal values of the generalized tractions, respectively. Eq. (47),
coupled with the electromechanical boundary conditions, provides the solution of the problem. If the in-
vestigated domain is made up of piece-wise different materials the problem can be solved by the multi-
domain BEM (Banerjee and Butterfield, 1981; Blandford et al., 1981; Tan et al., 1992). This approach is
based on the division of the original domain into homogeneous subregions so that Eqgs. (44) and (47) still
hold for each single subdomain and one can write

HAY —GYPY =0 (i=1,2...M) (48)

where M is the number of subregions considered and the superscript (i) indicates quantities associated with
the ith subdomain. To obtain the solution one has to restore the domain unity by enforcing the generalized
displacement and traction continuity conditions along the interfaces between contiguous subdomains. Let
us introduce a partition of the linear algebraic system given by Eq. (48) in such a way that the generic vector
y¥ can be written as

yia,
yW=1| (49)
Pt

In Eq. (49) the vector y(a?)” collects the components of y) associated with the nodes belonging to the in-
terface 0€;; between the ith and jth subdomain, with the convention that 0Q;; denotes the external boundary
of the ith subdomain (see Fig. 1). By so doing in the discretized model the interface compatibility and
equilibrium conditions, that is the interface continuity conditions, are given by

Pl =-Pi) (i=1.M-1 j=i+1...M) (51)

It should be noted that, if the ith and jth subdomain have no common boundary, yé?)” is a zero-order vector
and Egs. (50) and (51) are no longer valid. The system of Eq. (48) and the interface continuity conditions,

0<;

90,

9y \ Sk

Fig. 1. Multidomain configuration.
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Eqgs. (50) and (51), provides a set of relationships, which, together with the external boundary conditions on
the external boundaries 0Q; (i = 1 ... M), allows one to obtain the electromechanical response in terms of
extended displacement and traction on the boundary of each subdomain. The multidomain approach may
be successfully used to model general fracture mechanics problems in homogeneous and inhomogeneous
piezoelectric bodies (Aliabadi, 1997). The scheme is to introduce artificial interface boundaries, which
connect the crack tips to the external boundary. By so doing the original cracked domain is divided into
subregions whose boundaries contain the crack surfaces. Applying suitable boundary conditions on the
crack surfaces (Dunn, 1994b), the multidomain boundary element approach provides the solution, which
directly supplies the crack tip generalized tractions and displacements (Blandford et al., 1981). Indeed, these
quantities coincide with the generalized tractions along the introduced artificial interface boundaries and
the generalized displacements on the crack surfaces, respectively. Starting from these data it is possible to
determine the generalized stress intensity factors (Suo et al., 1992) by using the well-established log-linear
procedure (Raju and Crews, 1981; Davi and Milazzo, 1997) or the displacement correlation method
(Blandford et al., 1981; Pan, 1999). A computer code has been developed to calculate the behavior of pie-
zoelectric bodies by using the present approach. The computer code, called PZ-BEMD, implements the
multidomain solution method and it is based on the following features. The influence coefficients are
computed by Gaussian quadrature, assuming linear shape functions to express the generalized displace-
ments and tractions on the boundary elements. An adaptive integration scheme has been applied which
allows one to numerically take the kernel singularities into account (Davi, 1989). According to Eq. (28), the
coefficients ¢* are also computed by using Gaussian quadrature. The interface continuity conditions are
enforced detecting automatically the boundaries common to contiguous subdomains by means of an in-
terface identification algorithm, which implements the partition introduced in Egs. (49), (50) and (51).

6. Applications and discussion

The piezoelectric material used in the computations is lead titanate-zirconate or PZT-4 ceramic whose
material constants can be found in Table 1 (Berlincourt et al., 1964). The case of a finite crack of length
2a (=1 m) in an infinite domain under uniform far-field stresses and normal electric displacement has been
analyzed. This study was carried out to establish confidence and reliability in the method by comparing the
present results with the exact solutions (Suo et al., 1992; Park and Sun, 1995). The infinite domain has been
simulated by truncating it into a square with its dimension being 20 times the crack length (Tan et al., 1992).
The analysis has been performed using 62 boundary elements for each of the two subdomains used in the
modelization. First the capability of the approach to depict the crack tip singular behavior was investigated
using the log-linear procedure (Davi and Milazzo, 1997), briefly described in the following. The generalized
stress distribution along a radial line from the crack tip can be approximated by (Pak, 1992)

3, = (K,—/\/Zﬂ:) r“ (52)

Table 1
Material constants of PZT-4

Elastic constants (N/m?) Piezoelectric constants (C/m?) Dielectric constants (C/Vm)

C]] 139 x 109

Cy 115x 10° ey —52 e, 6.46x107°

C]z 74.3 x 109 € 15.1

Ci; 77.8 x 10° ey 127 £n 5.62x 107

C44 25.6 x 109
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Fig. 2. Log-linear analysis for far-field constant loads.

where K is the generalized stress intensity factor, « is the crack tip singularity power and r is the distance
from the crack tip. This equation is fitted to the stresses computed along a radial interface starting from the
crack tip. If the equation fits well the numerical data, the singularity power and the generalized stress
intensity factor can be determined from the slope and the Z-intercept of the log X vs. log r plot. The stress
patterns computed by the present method fit very well Eq. (52) near the crack tip. This is shown in Fig. 2
where the results obtained for representative generalized stress components are plotted for both mechanical
and electric loads. Table 2 lists the generalized relative crack displacements, which are in good agreement
with the exact values evidencing again the accuracy of the present approach. Notice that the value of Agp
caused by a far-field stress o, is equal to that of Au, caused by a far-field electric displacement D, as a direct
outcome of the extended reciprocity theorem. The previous analysis confirms that the present method is
able to adequately describe crack tip singular behavior. On this basis the generalized stress intensity factors
may be also ascertained by extending the displacement correlation method to piezoelectric fracture me-
chanics. The generalized displacement correlation method is founded on the correlation of the computed

Table 2
Generalized relative crack displacements for a horizontal crack in an infinite domain
d(m)“ 0 = 1 N/m2 D2 =1 C/m2
Auy (10710 m) Ag (1071V) Ag (108 V) Auy (107" m)
Present Exact Present Exact Present Exact Present Exact
0.475 0.177 0.177 0.221 0.221 0.881 0.882 0.221 0.221
0.408 0.174 0.174 0.217 0.217 0.867 0.868 0.217 0.217
0.342 0.168 0.168 0.210 0.210 0.837 0.838 0.210 0.210
0.275 0.158 0.158 0.197 0.197 0.788 0.789 0.197 0.197
0.208 0.144 0.144 0.179 0.179 0.716 0.717 0.179 0.179
0.142 0.123 0.124 0.153 0.154 0.614 0.616 0.153 0.154
0.075 0.092 0.093 0.115 0.116 0.463 0.465 0.115 0.116
0.008 0.031 0.032 0.039 0.040 0.157 0.160 0.039 0.040

 Distance behind the crack tip.
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Table 3
Generalized stress intensity factors for a horizontal crack in an infinite domain
Ki/02/1a Ku/ony/ma Kii/oxny/na Kiv/Ds\/ra
Present® 1.0008 1.0025 1.0004 1.0001
Present® 0.9992 0.9989 0.9997 0.9994
Exact 1.0000 1.0000 1.0000 1.0000

#Computed by using the log-linear procedure.
® Computed by using the generalized displacement correlation method.

generalized relative crack displacements with their crack tip asymptotic expression, according to the fol-
lowing relation (Suo et al., 1992)

AU(d) = \/%YK (53)

where K is the vector of the generalized stress intensity factors, AU is the vector of the generalized relative
crack displacements, d is the distance behind the crack tip and Y is a material dependent matrix whose
expression was given by Suo et al. (1992). The normalized generalized stress intensity factors, computed by
using both the log-linear procedure and the generalized displacement correlation method, are given in Table
3 for different far-field loading conditions. In the table, the comparison with the exact solution is also
presented. The computations carried out confirm some interesting features of the behavior of cracked
piezoelectric infinite domains. The generalized stress intensity factors are uncoupled among them as a far-
field stress causes stress intensity factors only, whereas a far-field electric displacement induces an electric
displacement intensity factor only. The effect of the electromechanical coupling is thoroughly revealed in
the generalized displacements, which are usually coupled as shown in Table 2 (Pan, 1999). Based on the
good results obtained for cracks in infinite domains, the analysis has been extended to cracked finite pie-
zoelectric solids. In the following results are presented for a rectangular piezoelectric solid with a central
crack (e = 0.1 m) inclined ¥ = 45° with respect to the positive x; direction. The ratios of crack length to
width and of height to width are a/w = 0.2 and h/w = 2, respectively (see Fig. 3). The analysis was per-
formed for the specimen loaded by uniform tension and electric displacement applied in the x, direction.
Tables 4 and 5 list the normalized generalized stress intensity factors for the two loading conditions con-
sidered. The results are given for both the electromechanical coupled and uncoupled (e;; = 0) case and they
are compared with those given by Pan (1999). In Table 4, D* is a nominal electric displacement expressed in
the unit of C/m? and with amplitude equal to that of ¢,, expressed in N/m?. Analogously in Table 5, ¢* is a
nominal stress expressed in the unit of N/m? and with amplitude equal to that of D, expressed in C/m?. The
present results show that for cracks in finite, rectangular piezoelectric solids the generalized stress intensity
factors are usually coupled. This topic is particularly important for electric loads, which may induce large
mechanical stress intensity factors. Conversely, the electric displacement stress intensity factors due to
mechanical loads are usually negligible. It is however confirmed that the generalized stress intensity factors
associated directly with the load do not feel much the electromechanical coupling, which instead affects
noticeably the generalized relative crack displacement. This can be observed in Tables 6 and 7, which list
the generalized relative crack displacements for the cracked rectangular piezoelectric body under me-
chanical and electrical loads. Results are presented for both coupled and uncoupled case to highlight the
electromechanical coupling between the displacements and electric potential, which may be a primary
concern in the design of piezoelectric devices. Actually, a mechanical load induces both relative crack
displacements and electric potential and, vice versa, an electric load gives rise to both relative crack dis-
placements and electric potential.
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bbb
O, or D,

Fig. 3. Finite rectangular piezoelectric solid with an inclined crack.

Table 4
Generalized stress intensity factors for 45° inclined crack in a rectangular solid loaded by normal stress
Ki/02\/Ta Ku/02\/ma Kiv/D*\/ma
Coupled Present 0.5292 0.5163 —2.79 x 1071
Pan (1999) 0.5303 0.5151 —2.97 x 10712
Uncoupled Present 0.5252 0.5154 0.0000
Pan (1999) 0.5275 0.5151 0.0000
Table 5
Generalized stress intensity factors for 45° inclined crack in a rectangular solid loaded by electric displacement
K]/J*\/ﬁ KH/U*\/ﬁ Klv/Dz\/ﬁ
Coupled Present —1.44 x 10° 1.64 x 10° —0.7283
Pan (1999) —1.42 x 10° 1.69 x 10° —0.7278
Uncoupled Present 0.0000 0.0000 —0.7256
Pan (1999) 0.0000 0.0000 —0.7277

7. Conclusions

A boundary element formulation for the analysis of piezoelectric solids has been presented with the aim
of exploiting its features in piezoelectric linear fracture mechanics. The electroelastic response of cracked
piezoelectric solids has been determined by using a multidomain approach. This approach allows formu-
lating the problem only in terms of the generalized displacement boundary integral equation, avoiding
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Table 6
Generalized relative crack displacements for a 45° inclined crack in a rectangular solid loaded by ¢, = 1 N/m?
x1 =x; (107! m) Coupled Uncoupled
Auy (1077 m) Auy (10711 m) Ag (1072 V) Auy (1075 m) Auy (10711 m)
0.477 0.256 —0.190 0.232 0.274 —0.271
0.424 0.279 —0.206 0.252 0.298 —0.295
0.371 0.299 —0.219 0.268 0.318 -0.313
0.318 0.315 —0.230 0.281 0.335 —0.329
0.265 0.328 —0.239 0.292 0.348 —0.341
0.212 0.339 —0.246 0.300 0.359 —0.352
0.159 0.347 —0.251 0.307 0.367 —0.359
0.106 0.352 —0.255 0.312 0.373 —0.365
0.053 0.356 —0.257 0.314 0.377 —0.368
Table 7
Generalized relative crack displacements for a 45° inclined crack in a rectangular solid loaded by D, = 1 C/m?
x; =x (107! m) Coupled Uncoupled
Auy (107° m) Au, (1072 m) Ao (108 V) Ao (108 V)
0.477 0.353 0.232 0.093 0.175
0.424 0.371 0.252 0.100 0.189
0.371 0.385 0.268 0.107 0.201
0.318 0.391 0.281 0.112 0.211
0.265 0.406 0.292 0.116 0.219
0.212 0.410 0.300 0.120 0.226
0.159 0.416 0.307 0.123 0.230
0.106 0.420 0.312 0.125 0.234
0.053 0.431 0.314 0.126 0.236

hypersingular kernels. The solution of the model is achieved by BEM and the numerical results show the
capability of the method to accurately assess the behavior of piezoelectric bodies without assumptions on
the crack tip stress and electric states. On this basis, investigations have been performed to calculate the
generalized stress intensity factors and generalized relative crack displacements so that to study in depth the
effects of the electromechanical interaction on the structural behavior. It is pointed up that these coupling
effects need to be adequately taken into account for a sound modelization of piezoelectric fracture me-
chanics. The insight into the effects of the electromechanical coupling on the generalized stresses and
displacements is then a primary concern for a successful design of piezoelectric devices and structural
members. Moreover, the present electromechanical analysis suggests that for piezoelectric materials the
crack initiation and propagation criteria cannot be a simple extension of the elasticity criteria, based on
single stress intensity factor. In conclusion, the BEM presented in this paper is a powerful and effective tool
in the context of the linear electroelastic fracture mechanics, which is the core for the definition of “ef-
fective” quantities in the damage nonlinear modelization of piezoelectric materials.
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